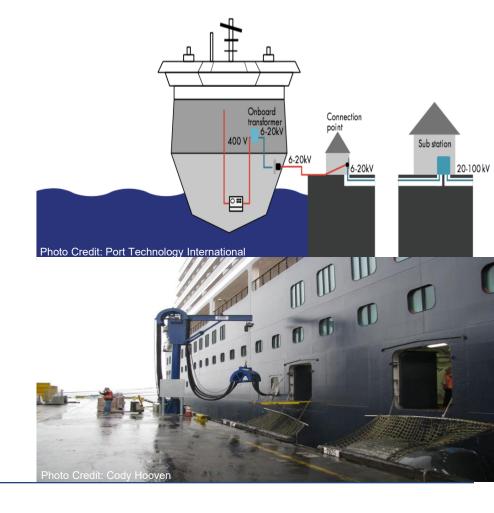


Onshore Power Supply; Idealism or Fallacy?

IMarEST Decarbonisation Conference
October 2025

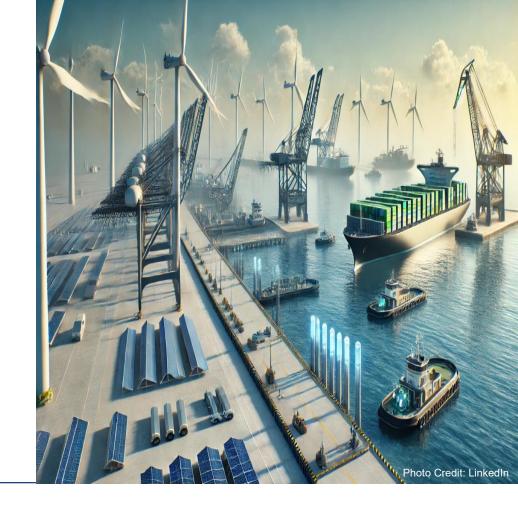
Tania Berry MSc CEng MIMarEST MIET Dr. Thomas Beard PhD CEng MIMarEST MIMechE


Background

Onshore Power Supply (Cold Ironing)

- Reduce Emissions
- Reduce Fuel Consumption
- IACS rec.182
- IMO's MSC.1/Circ.1675
- IEC/IEEE 80005 Series

Guidelines


- IEC 2015
- IEEE 2007
- European Alternative Fuels Observatory

The Ideal Vision


- Zero Emissions in Port
- Self-Sustaining Ports
- Shared Infrastructure
- Ship/ Grid/ Renewable Energy Integration

Reality Check

- Integration Challenges within Port / an Aging Infrastructure
- Limited Funding / Cost of Retrofitting Ports
- Integration into the Grid Grid Capacity
- Onshore Power Failure to meet Demand
- Pressure from Regulatory Bodies

Electrification of Ships

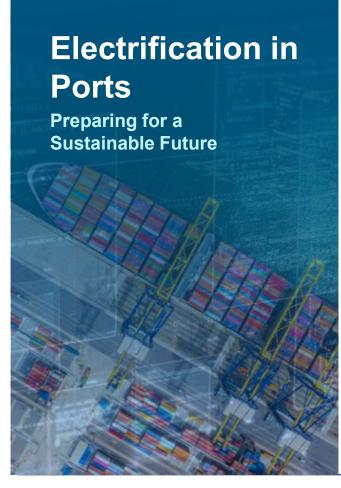
Regulatory Push

- FuelEU Maritime January 2025
- International Maritime Organisations (IMO) Net-Zero Framework (NZF) – Effective April 2025 – 2050
- National Net Zero Mandates
 - o UK 2050
 - Scotland 2045
- Ports and Harbours are now having to incorporate formal net-zero strategies to support decarbonisation efforts, mainly via electrification. Electrification is fundamental to these efforts and improving local air quality.

Constraints

- Limited generation & space capacity
- Port grid connection limitations
- Capital costs and return of investment
 - Policy inconsistency between energy and transport sectors
- Compatibility between existing vessels and OPS infrastructure

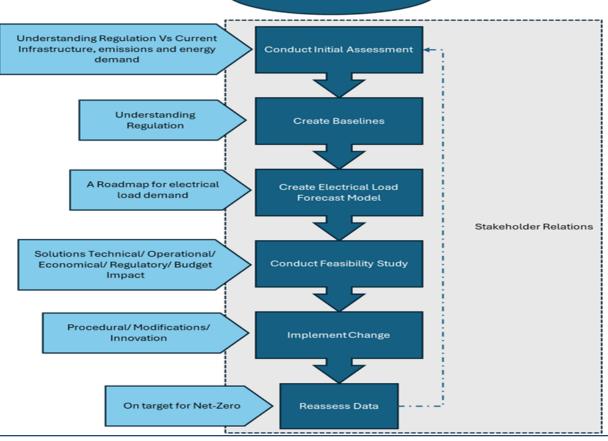
High Voltage > 1 MVA	Operability	Dimensions	Plug
Ro-Ro cargo and Ro-Ro passenger ships	80005-1 Annex B Normative	62613-2 Annex J	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Cruise ships	80005-1 Annex C Normative	62613-2 Annex G/H	
Container ships	80005-1 Annex D Normative	62613-2 Annex I	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LNG carriers	80005-1 Annex E Informative	62613-2 Annex J	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Tankers	80005-1 Annex F Informative	IEC 62613-2 Annex I	(1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
Other	80005-1 Not defined	62613-2 As appropriate	Not defined



Consequences of Inaction

- Increased local emissions
 - Environmental impact NOx, SOx and CO2 emissions
- Penalties for ship owners
 - Fines or port access restrictions
- Inability to become self-sustainable
- Missed Opportunity for Creating Jobs

Ports and Harbours are now having to incorporate formal net-zero strategies to support decarbonisation efforts, mainly via electrification. Electrification is fundamental to these efforts and improving local air quality.


The Preparation

- Assessment of existing infrastructure, policies and procedures
- Creating baselines in which to improve upon including emissions and operation efficiency
- Building early stakeholder relationships
- Creating an electrical load forecast to allow for sufficient electrification
- Conducting a feasibility study to identify the solution either through innovation or modification.

Preparation

Ports- Preparing for a Sustainable Future

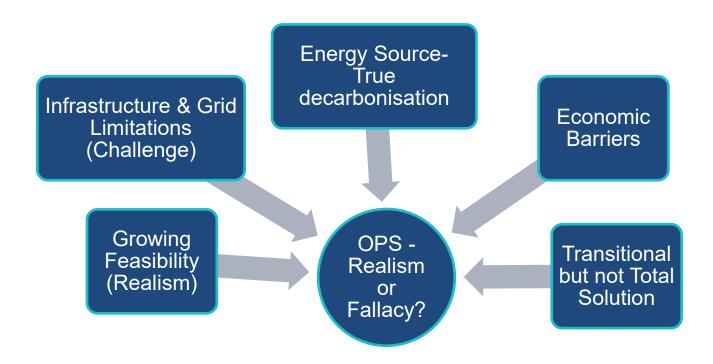
Planning

Coordinated Planning between Key Stakeholders

Infrastructure Assessments Smart Grids/ Load Balancing/ Energy Storage in Ports/ Microgrids

Funding
Options
availableGovernmental
Support

Phased Adoption


Maximising the 'Green Electron'

- Right Technology/ Right Timing/ Right Policy
- Coordination / Stakeholder Relationships
- Smart Energy Management
- Electrification/ Offshore Wind/ Sustainable Fuel Hub
- Electrification is KEY

Summary / Conclusion

Thank You, Any Questions?

Tania Berry
Electrical Capability Lead
BMT

Tania.berry@uk.bmt.org

Thomas Beard
Clean Shipping Service Lead
BMT

Thomas.beard@uk.bmt.org

OUR **CORE VALUES**

ENVIRONMENTALLY CONSCIOUS AND SUSTAINABLE DESIGN

MINIMISE BUILD AND OPERATING COST

INDUSTRY-LEADING TECHNICAL INNOVATION

