
Safe storage of hydrogen for power generation onboard naval vessels via LOHC

Engine as a Weapon XI November 2025

Dr. Thomas Beard

Contents

- Introduction
- Fuel Options
- What is LOHC
- Vessel Integration
- Conclusion

Introduction

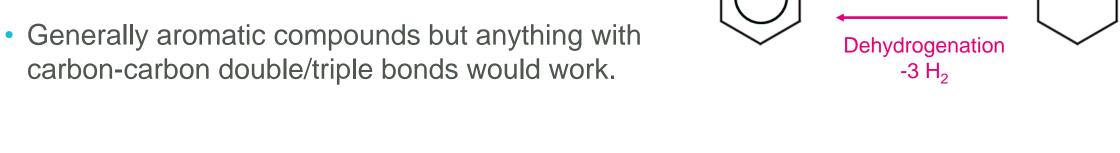
- Maritime accounts for ~2-3% global GHG emissions [1,2].
- IMO strategy
 - 20 40% reduction by 2030 (2008 baseline)
 - 5 10% alternative fuels by 2030
 - 70 80% reduction by 2040 (2008 baseline)
 - Net Zero by ~2050

Introduction

- Difficulty in following commercial maritime future fuel.
- Hydrogen is key to creating any synthetic fuel.
- Focus on generation after next.
- How could hydrogen be used on a naval vessel?

Fuel Options

	Hydrogen, H ₂	Liquified Natural Gas (LNG), CH ₄	Ammonia, NH ₃	Methanol, CH₃OH	LOHC, DBT	REFERENCE (MGO)
With Tank (Gross) Volumetric Energy Density (MJ/L)	2.7 – 7.9	13.2	11.5	14.2 – 15.1	6.85	27.3 – 31.0
General Storage Conditions	Cryogenic (or Pressurised)	Cryogenic	Cryogenic (or Pressurised)	Ambient	Ambient	Ambient
Space Requirement	7.7 – 15.7	3.2	3.4 - 6.4	2.3	4.2	1.0
Flash Point	-253°C	-162°C	-33°C	+12°C	~200°C	+61.5°C
Flammability Limits in air (vol%)	4.0 – 75.0	5.3 – 15.0	15.0 – 28.0	7.3 – 36.0	Not flammable	0.7 – 5.0
Minimum Ignition Energy in air (mJ)	0.02	0.29	8.0	0.14	Not flammable	20.0
Explosion Risk	Large flammability range with low ignition energy	Medium flammability range with reasonable ignition energy	Medium flammability range with high ignition energy	Medium flammability range with reasonable ignition energy	Not flammable	Small flammability range with high ignition energy
Toxicity	None	None	Highly toxic to humans and aquatic life	Toxic to humans, but very low- toxicity to aquatic life	Potentially toxic to aquatic life	Toxic to aquatic life
Combustion Emissions	NOx	NOx & lower COx	NOx	NOx & lower COx	NOx	COx, NOx, SOx & PM

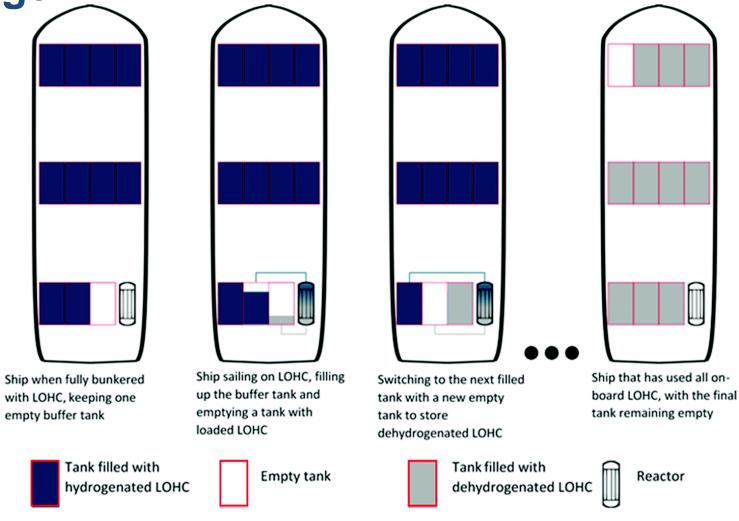

What is LOHC?

 LOHC is a carbon-based chemical that transports hydrogen.

carbon-carbon double/triple bonds would work.

Plethora of potential research

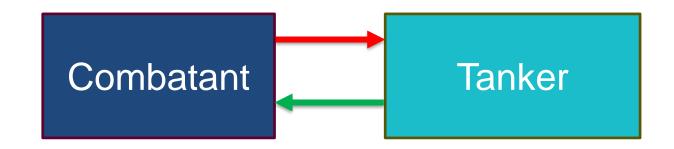
CH₃


Hydrogenation

+3 H₂

 CH_3

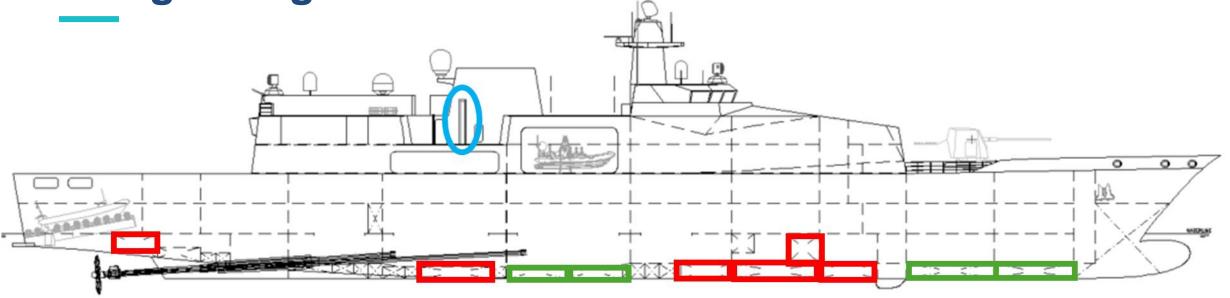
Cyclic fuel storage



Challenges

RAS of dehydrogenated form.

• Energy density reduction.


 Up to 25% energy stored to dehydrogenate.


Design Integration – Venator 110 baseline

- Fuel tankage currently 635 m³ for F76
- RAS equipment receive only
- Prime movers diesel only

Design Integration – Venator 110 modified

- Increased fuel tankage 860m³ by repurposing ballast tanks optimal size 40m³
- Dehydrogenation equipment located near prime mover
- RAS equipment send and receive
- Prime mover modifications or replacement

Conclusions

- LOHC can be safer than other future fuels.
- Repurpose ballast tanks for additional capacity.
- Requires supply chain to be created though.
- Require two-way RAS to refuel.
- Impact on range/endurance reduction of ~3.4.
- Potential to be used for auxiliary power
- What requirements are willing to exchange in the future?

Thank you

Any questions or queries please email me at: Thomas.beard@uk.bmt.org