

Abstract Overview

Key Thesis

Dual-fuel LNG retrofitting reduces CO2 by 15-25% (post-methane slip), cuts SOx/PM near-zero, offers 2.7-year payback, and bridges to bio-LNG

Challenges

Biofuels/ammonia face cost & scalability issues in developing nations

India Focus

Survey of 50 Indian shipowners shows 70% cite cost barriers

IMO Alignment

Supports 2030 interim targets and 2050 net-zero goals

The Challenge: Navigating Maritime Decarbonization Uncertainty

IMO 2050 Net-Zero Targets

20-30% reduction by 2030, 70-80% by 2040 - shipowners must act swiftly

BP Energy Outlook 2024

Energy addition phase where low-carbon and fossil fuels coexist, increasing investment risks

Survey Results

50 Indian shipowners surveyed - 70% cite cost as primary decarbonization barrier

Novel Perspective: Reframing the Energy Trilemma

Sustainability Challenges

Biofuels: \$1,200-1,800/tonne, feedstock competition with food security

\$

Economic Barriers

Ammonia/hydrogen: \$1,000+/tonne, specialized engines, toxicity risks

Developing Nations Focus

Infrastructure and capital constraints demand practical,
affordable solutions

Flexibility Solution

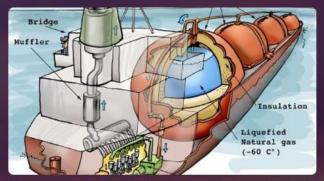
Retrofitting vs. newbuilds: 20-30 year asset lifespans require transitional approach

Methodology: Mixed-Method Approach for India's Coastal Shipping

The Solution: Dual-Fuel LNG Retrofit - Immediate Impact & Adaptability

Emissions Reduction

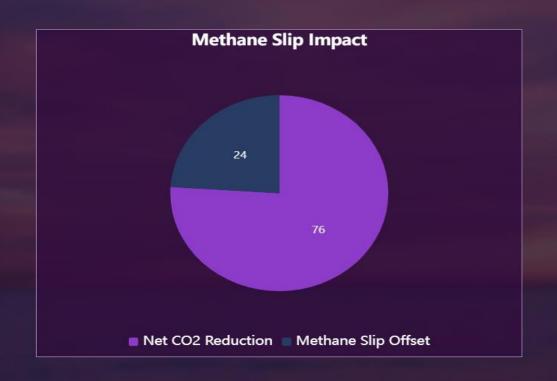
15-25% CO2 reduction (post-methane slip), near-zero SOx/PM, 85% NOx cut - aligns with IMO 2030 targets


Supply Security

Shell LNG Outlook: 50% global LNG trade growth by 2040

Future Ready

Dual-fuel flexibility enables bio-LNG integration for carbonneutral operations



Comparative Analysis: Why LNG Excels in Developing Nations

Retrofit focus reduces costs vs. newbuilds; 200+ global bunkering ports including emerging Mumbai hub

Fuel	CO2eq Reduction	Cost (\$/tonne)	Scalability Challenges	India Infrastructure
LNG (Dual-Fuel)	10-25% (with slip)	\$400-600	Methane slip, growing supply	Emerging (Mundra, Kochi)
Biofuels	50-80%	\$800-1,200	Feedstock shortage, food competition	Limited; high costs
Ammonia	90-100%	\$1,000+	Toxicity, engine overhauls	Minimal; no ports yet
Methanol	10-20%	\$700-900	Availability issues	Developing; Mumbai pilot
Hydrogen	95-100%	\$1,500+	Storage density, high costs	Non-existent in India

Addressing Methane Slip for Credible Savings

Slip Rate

6.4% in low-pressure engines (ICCT 2024) vs IMO 3.5% assumption

Mitigation Solutions

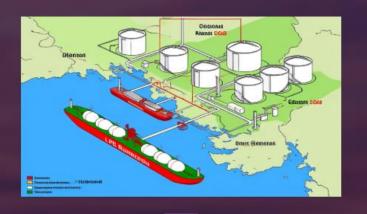
Wärtsilä high-pressure engines: 1.7% slip rate

Bio-LNG Bridge

Minimizes risk while supporting transitional role

Financial Case: Robust ROI - 2.7-Year Payback

Scenario	VLSFO Price	LNG Price	Payback Years
Base Case	\$600/tonne	\$450/tonne	2.7 years
High Volatility (+20%)	\$720/tonne	\$540/tonne	2.3 years
Low Volatility (-20%)	\$480/tonne	\$360/tonne	3.4 years


\$3.67M

2.7

Annual Fuel Savings

Year Payback Period

Technical Feasibility: Engineering Essentials

*

LNG stored at -162°C in specialized tanks requiring structural analysis

Vaporizer System

Converts liquid LNG to gas before injection into dual-fuel engines

Safety Systems

0

Double-walled piping and Gas Valve Unit (GVU) for leak containment

Case Study: VLCC Retrofit Benchmark & India Extension

SEA-LNG 2024 Results

Demonstrates proven financial and environmental benefits for large vessel retrofits, providing benchmark for Indian coastal shipping applications

12

Grade CII Improvement

Benefits & Challenges: Value Chain Wins & Infrastructure Solutions

Benefits Across Value Chain

Creates positive impacts for shipowners, charterers, and ports through financial savings and regulatory compliance

- Shipowners: ROI, fuel savings, CII improvement
- Charterers: Sustainability goals, efficiency gains
- Ports: New revenue streams, competitive advantage

Infrastructure Challenges

Bunkering development faces chicken-egg problem requiring coordinated solutions

- High upfront costs and demand uncertainty
- Fragmented regulatory framework
- PPPs, subsidies, mobile bunkering solutions

Conclusion: The Smart Path Forward

Balances the Trilemma

Technically sound, financially viable, environmentally compliant solution

Enables Participation

Allows India and developing nations to meaningfully contribute to IMO goals

Call to Action

Adopt LNG retrofits today for tomorrow's green fleet

References

Key Sources

Top references supporting this research and analysis

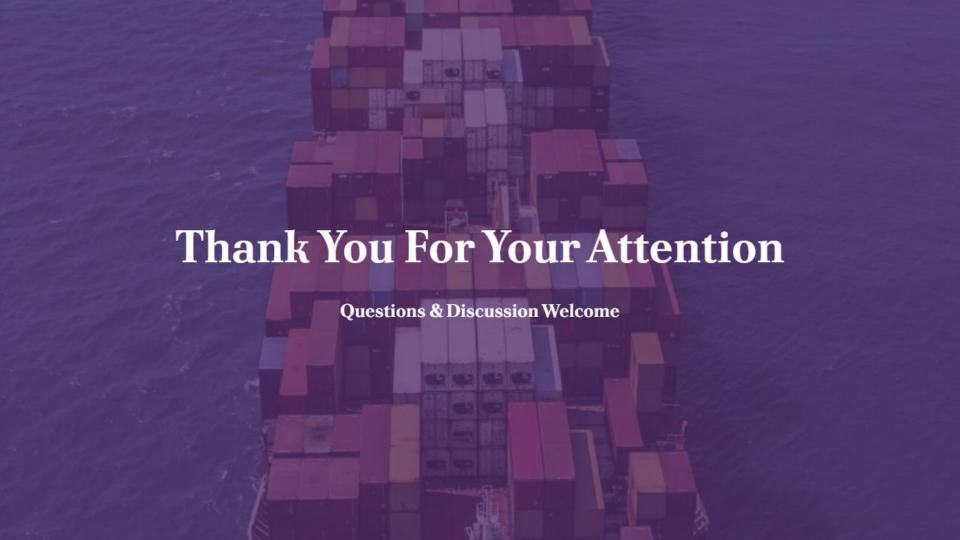
[1] Lloyd's Register

LNG Retrofits Surge Report (2025)

[3] IMO

2023 GHG Strategy MEPC.377(80)

[4] SEA-LNG


LNG Pathway Mid-Year Review (2025)

[5,6] ICCT/DNV

Methane Slip Studies (2023-2025)

