

Evolution of UK Electricity Transmission

IMarEST Coastal Science & Engineering SIG

Ed Walker

WWW.XODUSGROUP.COM

Overview

Evolution of UK Electricity Transmission (IMarEST Coastal Science & Engineering SIG - Ed Walker)

State of Play

- An aging transmission network geared toward a "conventional" energy system
- Urgent need for decarbonisation
- UK successes in conventional and increasingly floating Offshore Wind
- 50 GW of offshore wind by 2030?
- Greater penetration of renewables on the network
- Changes in consumption (electric vehicles / electrification of heat for e.g.)
- UK Government full decarbonisation of the electricity system by 2035

State of Play

- Past: electricity flows from large transmission-connected generation to the end consumer
- Future: wider range of decentralised, low-carbon energy sources connected in a sophisticated way

State of Play

Credit (L to R): UKCA; Drax Power; BBC; Walker, E; Sizewell C / CGN; Narec Dist. Energy [Decerna]; Rolls Royce Group; Xodus Group

State of Play

- Increasing challenges of balancing up renewable and low-carbon generation with the demand centres
- Taking Scotland as an example, frequently on an energy (electricity) surplus
- Renewable electricity = ~97% of Scotland's gross electricity consumption
- However, significant onward planned growth of OWF in Scotland...

GROSS ELECTRICITY CONSUMPTION AND % RENEWABLES OUTPUT

- Investment in upgrade to the transmission system
- Combination of onshore and offshore reinforcement
- So-called 'Great Grid Upgrade'
- Wide range of UK HVDC reinforcement

Evolution of UK Electricity Transmission (IMarEST Coastal Science & Engineering SIG - Ed Walker)

Solutions

- Onshore reinforcement + offshore
- National Grid ESO 'Pathway to 2030' sets out a vision for a new network to support movement toward net zero
- 'Holistic Network Design' onshore and offshore design that can facilitate UK ambitions for offshore wind

Working with stakeholders to develop the Holistic Network Design What happens next

HND: Recommendations identified previously

HND: New network needs to be

identified

HND: Full set of major network requirements recommended

- Network Options Assessment recommendations for which reinforcement projects should receive investment and ultimately proceed
- Economic recommendations by comparing the cost of managing constraints with reinforcement
- A range of reinforcements from the HND (right) are in varying stages of development...

East Coast UK transmission reinforcement examples alone...

- E4D3 (Eastern Green Link 2 HVDC) HVDC
- E4L5 (Eastern Scotland to England 3rd HVDC link)
- PSDC Spittal to Peterhead HVDC reinforcement
- E2DC Eastern subsea HVDC link from Torness to Hawthorn Pit
- TGDC Eastern subsea HVDC Link from east Scotland to south Humber area

Not just about transmission...

- Multiple generators (offshore wind projects) considered as part of the Holistic Network Design
- Greater coordination in movement of electricity from wind generation
- Options for bringing renewable electricity directly to England from generation in Scottish waters?

Recommended design: Coordinated

Congestion

- Increasingly more complex to identify and plan
- Routeing how to find the best onbalance solution amidst such a 'busy' offshore environment?
- Wide range of other sea users all important to consider...

Data Acquisition and routeing

- Variable & challenging seabed
- Routeing process can help to avoid many constraints
- Not possible to avoid 'everything'
- Data used to inform investigation into Burial Assessment
- Best on-balance solution from an environmental, technical and commercial perspective

Consenting

- Time to compile Environmental Assessment
- Increasing emphasis on protecting our sensitive marine environment (rightly!) expanded / additional designated sites
- 'Regulatory burden' UK marine environment increasingly busy
- Proportionality in impact assessment

Practical Installation Factors

- Physical installation process highly complex
- Harsh and demanding offshore environment
- Range of installation tools and methodologies to complete

Landfalling

- Transmission links require landfalls (i.e. the point where offshore meets onshore)
- How to locate a landfall in complex, often sensitive environments?
- Wide range of criteria which need to be considered...

Landfalling

- Selecting a landfall which is technically, commercially and environmentally viable?
- "Consentability"
- Locally acceptable
- Competition (volume of connections vs available space)
- Resilience for lifetime of the project

Credit: FCC Industrial; Flowtex; Riggall & Associates

Logistical Factors

- Securing vessel availability "competing" for availability
- Subsea cable manufacturing
- Constrained cable production & installation market

Table 3.1: HND essential options for North Scotland

Pace

- Scale of these and other challenges significant but need to reinforce at pace
- For example, see below (and this is only one geographical section from the NOA!)

Code	Option description	EISD*	RISD**	Earliest optimal delivery date	Eligible for competition?			
BBNC	Beauly to Blackhillock 400 kV double circuit addition	2030		2030	✓			
BLN4	Beauly to Loch Buidhe 400 kV reinforcement	2031	2030	2030	\checkmark			
BPNC	A new 400 kV double circuit between Blackhillock and Peterhead	2031	2030	2030	✓			
E4D3	Eastern Scotland to England link: Peterhead to Drax subsea HVDC Link	2029		2029	✓			
E4L5	Eastern Scotland to England 3rd link: Peterhead to the south Humber subsea HVDC Link	2031	2030	2030	✓			
PSDC	Spittal to Peterhead HVDC reinforcement	2030		2030	✓			
SLU4	New network need between Loch Buidhe and Spittal	2030		2030	✓			
TKUP	East Coast Onshore 400 kV Phase 2 reinforcement	2032	2030	2030	✓ (Part)			

Table 3.2: List of options and their recommendations for North Scotland

Code	Option description	EISD*	Earliest optimal delivery date	Recommendation	Eligible for competition?
BDUP	Uprate the Beauly to Denny 275 kV circuit to 400 kV	2029	2030	Hold	
DLUP	Windyhill-Lambhill-Denny North 400 kV reinforcement	2029	2029	Proceed	
DNEU	Denny North 400/275 kV second supergrid transformer	2025	2026	Hold	
DWNO	Denny to Wishaw 400 kV reinforcement	2028	2028	Proceed	
DWUP	Kincardine - Wishaw 400 kV reinforcement	2026	2026	Proceed	
LWUP	Kincardine 400 kV reinforcement	2027	2027	Proceed	
TFPC	Power flow control device along Tealing to Westfield	2025	2027	Hold	

* EISD is currently based on the current regulatory and consenting process and acceleration

Transmission System

- UK transmission reinforcement 'Great Grid Upgrade'
- Several 'leading' schemes (watch this space for schemes such as Eastern Green Link 1 and 2 which have all primary consents)
- Further emerging schemes, as recommended by the NOA

Innovation

- Emerging solutions, such as Multi-Point Interconnectors
- Growth of Floating Offshore Wind how can this integrate into the evolving transmission system?
- Role of other technologies, such as Hydrogen and CCUS relationship with transmission system?
- Use of data to help speed up development (more on this later...)

Resource Demands

- Existing and future demand for skilled individuals
- Complex infrastructure projects = significant and varied demands for people
- Major opportunity for those considering marine careers...

Pace

- Urgency of required upgrades
- In order to tackle the challenge at hand, urgent need for coordination
- More coordinated network? Shared landfalls?
- Whilst working at pace, need to do so whilst maintaining safety as the top priority

WHAT WE DO

Helping our clients thrive in an evolving energy world.

......

ADVISORY Integrating our diverse technical and commercial expertise **ENGINEERING** Using experience and knowledge to maximise performance

ENVIRONMENT Delivering a sustainable and responsible energy future

SUPPLY CHAIN Adding value to projects, communities and consumers

WE ARE XODUS

With specialist engineers, consultants and scientists across multiple disciplines we combine our skills to deliver a **truly integrated** offering.

Our Offices and Sample of Existing Clients

28

What does the I&C team deliver?

Specialist Advisory – Technical Advisory, Due Diligence, Expert Witness

What does the I&C team deliver?

optioneer

Routing with Artificial Intelligence

Evolutionary Algorithms | Millions of Routes | Rapid Optioneering

What is optioneer?

- A routing software which combines engineering requirements (e.g. route geometry, crossing requirements, protection / installation methods) and environmental constraints (e.g. no-go zones, hard / soft constraints)
- Quickly generates feasible route options
- Allows visualisation of large amounts of data for quantities, costs and other important considerations along each route profile

How it Works

- The software generates route options using evolutionary algorithms
- The algorithm identifies favoured route solutions for short and long distance power cable routes

Geospatial Data

•

•

Technical Constraints

Seabed Sediment

Local Seabed Slopes

Exposed Rock/Reef

What parameter is

required and what

data do we have?

Shallow Geology

Bathymetry

Environmental Constraints

- Designated Sites (SPAs, SACs, MPAs, MCZs, SSSIs)
- **Protected Habitats**
- Installation Constraints
- Turning radii and runin lengths (crossings, landfalls)
- Crossing linear infrastructure (cables, pipelines)
- Installation methods (trenching, protection)
- Distance to critical features

Other User Constraints

- Harbours, Marinas, Anchorages
- Shipping Density
- Fishing Density
- Dredging/Disposal
- Aggregates/Mining
- Oil and Gas
- **Renewable Sites**

Cultural Heritage and

- Wrecks and Protected Remains
- Battlefields •
- UXO ٠

Military

- PFXA •
- Munitions Dumps •

INTERCONNECTORS & CABLES

Explore the Options

Understand the Trade-Offs

Conclusions & Key Takeaways

Further Reading

- Future Energy Scenarios ('FES') National Grid ESO (Link)
- East Coast Study The Crown Estate (Link)
- Offshore Coordination Project National Grid ESO (Link)
- The Great Grid Upgrade National Grid (Link)
- Pathway to 2030 Holistic Network Design ('HND') (Link)
- Network Options Assessment ('NOA') / NOA Refresh (Link)
- Offshore Transmission Network Review ('OTNR') (Link)
- 'Finding Space for Offshore Wind' The Crown Estate (Link)
- Information about the three UK transmission owners (Link)
- Carbon Trust CBRA Guidance The Carbon Trust (Link)
- Xodus Interconnectors and Cables case studies available on request (Link here; contact details follow below)

Thank You

Edward Walker MEI MIEMA CEnv MIMarEST CMarTech MCIWEM C.WEM Environmental Specialist – Coastal Energy T +44 131 385 7372 E edward.walker@xodusgroup.com

WE ARE XODUS.

WWW.XODUSGROUP.COM